Die abgebildeten Dominosteine wurden zu einem Rechteck aneinandergelegt. Anschließend wurden die Trennlinien zwischen den Dominosteinen entfernt. Rekonstruieren Sie die fehlenden Trennlinien, so dass jeder Dominostein genau einmal im Diagramm vorkommt.
Beispiel:
Puzzle:
Die abgebildeten Dominosteine wurden zu einem Rechteck aneinandergelegt. Anschließend wurden die Trennlinien zwischen den Dominosteinen entfernt. Rekonstruieren Sie die fehlenden Trennlinien, so dass jeder Dominostein genau einmal im Diagramm vorkommt.
Beispiel:
Puzzle:
Die abgebildeten Dominosteine wurden zu einem Rechteck aneinandergelegt. Anschließend wurden die Trennlinien zwischen den Dominosteinen entfernt. Rekonstruieren Sie die fehlenden Trennlinien, so dass jeder Dominostein genau einmal im Diagramm vorkommt.
Beispiel:
Puzzle:
Gebiete gleicher Farbe dürfen sich höchstens an den Ecken berühren. Die farbigen Grenzen haben die Farbe, die sich ergibt, wenn man die Farben der benachbarten Felder mischt. Dabei ergibt sich aus der Mischung von rot und blau violett, bei der Mischung von rot und gelb orange und bei der Mischung von blau und gelb grün.
Beispiel:
Puzzle:
Zerlege das Diasgramm in 4-feldrige Gebiete, so dass jedes Gebiet genau eine
der blauen Formen
enthält und so dass diese Form nicht in das Gebiet passen würde (wenn vergrößert).
Beispiel:
Puzzle:
Zerlege das Diasgramm in 4-feldrige Gebiete, so dass jedes Gebiet genau eine
der blauen Formen
enthält und so dass diese Form nicht in das Gebiet passen würde (wenn vergrößert).
Beispiel:
Puzzle:
Finde im Diagramm die Position von 20 Schachspringern. Die Zahlen im Diagramm geben die Anzahl der Springer an, die dieses Feld attackieren. Auf den Feldern mit den Zahlen befinden sich keine Springer.
Füllen Sie das Diagramm mit Zahlen von 1 bis 9, wobei in jeder Zeile, jeder Spalte, in jedem der neun 3x3-Felder jede Zahl genau einmal vorkommt. Zahlen in Feldern mit einem Schachspringer attackieren mindestens ein Feld mit der Distanz eines Schachspringers. Die Zahlen am Rand sind die Summe der Felder mit einem Springer.
Kleineres Beispiel:
Puzzle:
Füllen Sie das Diagramm mit Zahlen von 1 bis 9, wobei in jeder Zeile, jeder Spalte, in jedem der neun 3x3-Felder jede Zahl genau einmal vorkommt. Zahlen in Feldern mit einem Schachspringer attackieren mindestens ein Feld mit der Distanz eines Schachspringers. Die Zahlen am Rand sind die Summe der Felder mit einem Springer.
Kleineres Beispiel:
Puzzle:
Füllen Sie das Diagramm mit Zahlen von 1 bis 6, so dass in den Zellen um die schwarzen Felder jede Ziffer genau einmal vorkommt. Benachbarte Felder müssen verschieden sein.