No. 254, April 2011
15181 - Per Olin
Die Schwalbe, No. 254, 04/2012
A to B in 15.5 moves (White starts)
A: [8/2PP1PPP/3P4/8/4p3/7k/p1ppppp1/K7] (7+8)
B: [2QN2QB/5RbK/2Nrk3/5r2/5b2/8/1n6/4q3] (7+7)
Solution
The solution not available yet. Please contribute!
15182 - Alain Brobecker
15+14. Proof game in 5.0 moves (Actuated Revolving Center)
[rn1qkbnr/ppp2ppp/8/8/3pP3/1P6/P1PP1PPP/RN1QKBNR]
15183 - Stephan Dietrich
16+16. Proof game in 6.0 moves (Platzwechselcirce)
[rnbqnk1r/ppp2ppp/2Np1p2/4b3/8/8/PPPPPPPP/RNBQKB1R]
Solution by Gani Ganapathi:
1.Ng1-f3 d7-d6 2.Nf3-e5 Bc8-d7 3.Ne5:d7 [+bBe5] Ng8-f6 4.Nd7:f8 [+bBd7] Ke8:f8 [+wNe8] 5.Ne8:f6 [+bNe8] e7:f6 [+wNe7] 6.Ne7-c6 Bd7-c8
Please note that N used in above moves is actually Knight and not Nightrider.
15184 - Thomas Thannheiser
6+6. Proof game in 12.0 moves (Losing Chess)
[r7/3ppppp/8/8/8/8/2PPPPP1/R7]
15185 - Bernd Gräfrath
Günter Büsing zum 65.Geburtstag gewidmet
12+16. Proof game in 15.0 moves (Single Combat Chess)
[rnbqk1nr/1pp1pp1p/p2p4/2b2p2/1P1P1P2/2P5/P3P3/R1BQKB1R]
15186 - Andreas Thoma
8+9. Retract 3 moves, then #1 (Proca-Retractor, Anticirce Cheylan)
[r7/7p/5p1B/7k/3p3N/2nP1b2/4pr2/1Q1NKR1B]
15187 - Klaus Wenda
5+10. Retract 7 moves, then #1 (Proca-Retractor, Anticirce)
[3r1B1b/pRqk4/3P4/8/7p/1p5r/1p2P2p/4K3]
15188 - Andreas Thoma
1+4. Retract 9 moves, then #1 (Proca-Retractoe, Anticirce)
[8/6p1/5p2/7k/2p5/8/8/4K3]
15189 - Wolfgang Dittmann
11+12. Retract 22 moves, then #1 (Proca-Retractor, Anticirce Cheylan)
[B5K1/qrR1p1BP/pb6/ppP5/kb6/PpPP4/2P4P/Nb6]
15190 - Werner Keym
0+0. The kings as well as a white and black piece of the same kind are placed on a chess board which squares are numbered a) as shown in the diagram b) horizontally mirrored (a1=50, h1=1). In both cases the white king is located on a square with a higher number than the black king. The sum of all squares occupied by a piece is a) minimal b) maximal and remains unchanged after a single move. Hat are the 4 possible positions?
(Die Könige, ein wei?#376;er und ein gleichartiger schwarzer Stein stehen auf einem Schachbrett, dessen Felder im Fall A) nach dem angegebenen geometrischen Muster nummeriert sind, im Fall B) horizontal gespiegelt (a1=50,h1=1). Der wei?#376;e König hat jeweils eine höhere Platzzahl als der schwarze. Die Summe der Zahlen der Standfelder der Steine ist a) minimal, b) maximal und bleibt nach einem Einzelzug unverändert. Welches sind die vier Stellungen?)