ALL DE FR ES IT

Logo

Die Schwalbe

No. 239, October 2009

14241 - Andrei Frolkin

Die Schwalbe 239, October 2009

[knRQqB2/2K1rpp1/PrpRp3/bp1p4/1p6/1N6/1PP1PPP1/N4B2]

14+13. Release the position

[knRQqB2/2K1rpp1/PrpRp3/bp1p4/1p6/1N6/1PP1PPP1/N4B2]

Solution


14242 - Andrei Frolkin

Die Schwalbe 239, October 2009

[1knRBB2/1P1K1rp1/bRrPppp1/Qpppp3/8/8/P1P5/8]

10+13. Release the position

[1knRBB2/1P1K1rp1/bRrPppp1/Qpppp3/8/8/P1P5/8]

Solution


14243 - Andrei Frolkin

Die Schwalbe 239, October 2009

[1qKRQB2/p2pRPP1/1p1kppp1/1bbrp3/1r1pP3/2P5/1PP5/8]

11+14. Last 8 single moves?

[1qKRQB2/p2pRPP1/1p1kppp1/1bbrp3/1r1pP3/2P5/1PP5/8]

Solution


14244 - Dmitri Baibikov

Die Schwalbe 239, October 2009

[8/p3p3/8/6PP/4PPrQ/1P1PRKpp/2PRpbBr/4kb2]

12+10. -10 & #1, Proca retractor

[8/p3p3/8/6PP/4PPrQ/1P1PRKpp/2PRpbBr/4kb2]

Solution


14245 - Unto Heinonen

Die Schwalbe 239, October 2009

[rnb1k3/p1p1pp1p/8/8/8/8/P4PPP/R1BQK1NR]

10+9. Shortest proof game in 9.5 moves

[rnb1k3/p1p1pp1p/8/8/8/8/P4PPP/R1BQK1NR]

Solution


14246 - Alfred Pfeiffer

Die Schwalbe 239, October 2009

[qrk2N2/Ppp1p2p/2P3Pr/2Np2pB/8/4P3/1PP3PP/BRK3RQ]

16+10. #3, Fischer Random Chess

[qrk2N2/Ppp1p2p/2P3Pr/2Np2pB/8/4P3/1PP3PP/BRK3RQ]

Solution


14247 - Bernd Gräfrath

Die Schwalbe 239, October 2009

[rnbqkbnr/ppp2ppp/8/4p3/5P2/8/PPP1N1PP/RNBQ1RK1]

13+15. Proof game in exactly 7.5 moves (Duellist)

[rnbqkbnr/ppp2ppp/8/4p3/5P2/8/PPP1N1PP/RNBQ1RK1]

Solution


14248 - Ivan Antonov

Die Schwalbe 239, October 2009

(This problem was later found to be cooked)

[rnbqkbnr/p1ppppp1/8/7B/8/2B5/8/1R2K1NR]

6+14. Shortest proof game in 12.5 moves (Take & Make)

[rnbqkbnr/p1ppppp1/8/7B/8/2B5/8/1R2K1NR]

Solution


14249 - Werner Keym

Die Schwalbe 239, October 2009

[q4b2/ppppp1pp/8/8/8/8/1PPP4/2KR3k]

5+10. How many squares could the pieces now present on the board have visited maximally, if none of these pieces visited a square more than once?

[Wie viele Felder konnten die vorhandenen Steine höchstens betreten, wenn jeder dieser Steine kein Feld mehrmals betrat?]

[q4b2/ppppp1pp/8/8/8/8/1PPP4/2KR3k]

Solution


14250 - Per Grevlund

Die Schwalbe 239, October 2009

bernd ellinghoven zum Geburtstag

[2r1k3/8/2P5/8/8/2K5/2NP4/8]

4+2. ser-#9, how many solutions?

[2r1k3/8/2P5/8/8/2K5/2NP4/8]

Solution


14251 - Bernd Schwarzkopf

Die Schwalbe 239, October 2009

Illegal cluster with wK, bK, 3 wR. The kings are on same-coloured squares, and one rook has only empty neighbouring squares.

[Illegal Cluster mit wK, bK, 3 wT. Die Könige stehen auf derselben Felderfarbe; ein Turm hat nur leere Nachbarfelder.]

Solution


14252 - Stephan Dietrich

Die Schwalbe 239, October 2009

A white knight is placed on a1. On the board are further seven white rooks. (8+0)

a) How many positions like this exist with no piece guarding another?

b) Generalise for an nxn board with (n-1) rooks (n >= 3)

[Auf einem Schachbrett steht auf a1 ein wei?#376;er Springer. Auf dem restlichen Schachbrett stehen 7 wei?#376;e Türme.

a) Wie viele derartige Stellungen gibt es, bei denen keine Figur eine andere deckt?

b) Wie viele Stellungen ergeben sich bei einer Verallgemeinerung der Aufgabestellung auf ein nxn Brett (n >= 3) mit wSa1 und n-1 wei?#376;en Türmen?]

Solution


Duellist: if legally possible, a move must be made with the piece that moved previously (the duellist). If not possible, a new duellist must be chosen.

Take & make: As part of the move, a piece that captures must make one move like the captured piece. If this move isn't possible, the capture isn't legal. Pawns promote only after their 'make' move, and may not end up on their base rank. Checks are orthodox.

Fischer Random Chess: At the beginning of the game, the pieces are symmetrically) shuffled. The king must be between the rooks, and the bishops must be on different square colours. White and black start with the same position of the pieces. Kingside castling is done by moving the king to g1/g8 and the rook that was east of the king to f1/f8, queenside castling is done by moving the king to c1/c8 and the rook that was west of the king to d1/d8.

[JdH: For the exact FIDE rules: http://www.fide.com/fide/handbook?id=125&view=article, section F]

In 14246, white kingside castling would result in Kc1->g1, Rg1->f1, white queenside castling would result in Kc1->c1 (doesn't move), Rb1->d1, and black queenside castling would result in Kc8->c8 (doesn't move), Rb8->d8.