Von Günther Rothenbücher und TOMMi:
Sei das Alter von Karl gleich 10a+b und das Alter von Anton gleich 10c+d (alle
Buchstaben stehen für einstellige und ganzzahlige Zahlen (also Ziffern)). Dann
gilt:
(1) 10a + b + 25 = 10c + d
(2) c * d = 10a + b
(3) a + b = c
Gleichung (2) in Gleichung (1) einsetzen liefert
c * d + 25 = 10c + d
d = (10c - 25)/(c-1)
c muss größer oder gleich 3 sein (Anton ist 25 Jahre älter!). c muss gerade
sein, da der Zähler als Einer-Stelle immer eine 5 hat und der Nenner somit immer
ungerade sein muss.
Mögliche Werte für c sind also 4, 6 und 8:
c=4 => d=5 => Anton ist 45, Karl ist 20 => 2+0<>4 => keine Lösung
c=6 => d=7 => Anton ist 67, Karl ist 42 => korrekte Lösung
c=8 => d=55/7 => keine Lösung
Also: Anton ist 67 und Karl ist 42
Von Andreas Wüst:
Gleichung (3) in Gleichung (1) einsetzen. Dies ergibt:
10a + b + 25 = 10a + 10b + d
9b + d = 25
Da d eine einstellige, positive Zahl ist, kann nur b=2 sein und demzufolge d=7.