# Die Schwalbe

No. 239, October 2009

14241 -

Die Schwalbe 239, October 2009

14+13. Release the position

[knRQqB2/2K1rpp1/PrpRp3/bp1p4/1p6/1N6/1PP1PPP1/N4B2]

Solution

14242 -

Die Schwalbe 239, October 2009

10+13. Release the position

[1knRBB2/1P1K1rp1/bRrPppp1/Qpppp3/8/8/P1P5/8]

Solution

14243 -

Die Schwalbe 239, October 2009

11+14. Last 8 single moves?

[1qKRQB2/p2pRPP1/1p1kppp1/1bbrp3/1r1pP3/2P5/1PP5/8]

Solution

14244 -

Die Schwalbe 239, October 2009

12+10. -10 & #1, Proca retractor

[8/p3p3/8/6PP/4PPrQ/1P1PRKpp/2PRpbBr/4kb2]

Solution

14245 -

Die Schwalbe 239, October 2009

10+9. Shortest proof game in 9.5 moves

[rnb1k3/p1p1pp1p/8/8/8/8/P4PPP/R1BQK1NR]

Solution

14246 -

Die Schwalbe 239, October 2009

16+10. #3, Fischer Random Chess

[qrk2N2/Ppp1p2p/2P3Pr/2Np2pB/8/4P3/1PP3PP/BRK3RQ]

Solution

14247 -

Die Schwalbe 239, October 2009

13+15. Proof game in exactly 7.5 moves (Duellist)

[rnbqkbnr/ppp2ppp/8/4p3/5P2/8/PPP1N1PP/RNBQ1RK1]

Solution

14248 -

Die Schwalbe 239, October 2009

(This problem was later found to be cooked)

6+14. Shortest proof game in 12.5 moves (Take & Make)

[rnbqkbnr/p1ppppp1/8/7B/8/2B5/8/1R2K1NR]

Solution

14249 -

Die Schwalbe 239, October 2009

5+10. How many squares could the pieces now present on the board have visited maximally, if none of these pieces visited a square more than once?

[Wie viele Felder konnten die vorhandenen Steine höchstens betreten, wenn jeder dieser Steine kein Feld mehrmals betrat?]

[q4b2/ppppp1pp/8/8/8/8/1PPP4/2KR3k]

Solution

14250 -

Die Schwalbe 239, October 2009

bernd ellinghoven zum Geburtstag

4+2. ser-#9, how many solutions?

[2r1k3/8/2P5/8/8/2K5/2NP4/8]

Solution

14251 -

Die Schwalbe 239, October 2009

Illegal cluster with wK, bK, 3 wR. The kings are on same-coloured squares, and one rook has only empty neighbouring squares.

[Illegal Cluster mit wK, bK, 3 wT. Die Könige stehen auf derselben Felderfarbe; ein Turm hat nur leere Nachbarfelder.]

Solution

14252 -

Die Schwalbe 239, October 2009

A white knight is placed on a1. On the board are further seven white rooks. (8+0)

a) How many positions like this exist with no piece guarding another?

b) Generalise for an nxn board with (n-1) rooks (n >= 3)

[Auf einem Schachbrett steht auf a1 ein weißer Springer. Auf dem restlichen Schachbrett stehen 7 weiße Türme.

a) Wie viele derartige Stellungen gibt es, bei denen keine Figur eine andere deckt?

b) Wie viele Stellungen ergeben sich bei einer Verallgemeinerung der Aufgabestellung auf ein nxn Brett (n >= 3) mit wSa1 und n-1 weißen Türmen?]

Solution

Duellist: if legally possible, a move must be made with the piece that moved previously (the duellist). If not possible, a new duellist must be chosen.

Take & make: As part of the move, a piece that captures must make one move like the captured piece. If this move isn't possible, the capture isn't legal. Pawns promote only after their 'make' move, and may not end up on their base rank. Checks are orthodox.

Fischer Random Chess: At the beginning of the game, the pieces are symmetrically) shuffled. The king must be between the rooks, and the bishops must be on different square colours. White and black start with the same position of the pieces. Kingside castling is done by moving the king to g1/g8 and the rook that was east of the king to f1/f8, queenside castling is done by moving the king to c1/c8 and the rook that was west of the king to d1/d8.

[JdH: For the exact FIDE rules: http://www.fide.com/fide/handbook?id=125&view=article, section F]

In 14246, white kingside castling would result in Kc1->g1, Rg1->f1, white queenside castling would result in Kc1->c1 (doesn't move), Rb1->d1, and black queenside castling would result in Kc8->c8 (doesn't move), Rb8->d8.